A Study of Perturbations of the $A^1\Sigma_u^+$ State of Na_2

Rami Haj Mohamad^a, Khaled Hussein^a, and Omar Babaky^b

^a Lebanese University, Faculty of Sciences III, P.O. Box 826, Tripoli, Lebanon
^b Sana'a University, Faculty of Science, Department of Physics, P.O. Box 13783, Sana'a, Republic of Yemen

Reprint requests to R. H. M.; E-mail: hrami73@hotmail.com

Z. Naturforsch. **61a**, 349 – 356 (2006); received April 13, 2006

High resolution Fourier spectrometry techniques have been used to study the $A^1\Sigma_u^+$ state, which is perturbed by the $b^3\prod_u$ state of the Na₂ molecule. This study was achieved by means of exciting the $B^1\prod_u$ state from the $X^1\Sigma_g^+$ ground state by 4880 Å and 4965 Å lines of an Ar^+ laser. The excitation is followed by collisional transfer energy produced between $B^1\prod_u$ and $(2)^1\Sigma_g^+$ states, which led to the population of the vibrational levels of the $(2)^1\Sigma_g^+$ state ν . The analysis of the collision-induced system $(2)^1\Sigma_g^+ - A^1\Sigma_g^+$ enabled us to study, in detail, the perturbations of 11 vibrational levels from $\nu=0$ to $\nu=10$ of the $A^1\Sigma_u^+$ state.

Key words: Perturbations; Vibrational Levels; Molecular Constants; Excited State $A^1\Sigma_u^+$.